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SUPERSONIC FLUTTER OF PANELS LOADED
WITH INPLANE SHEAR

James Wayne Sawyer
Langley Research Center

SUMMARY

A modal flutter analysis for biaxially loaded, orthotrovic panels, using linear piston-
theory aerodynamics, has been extended in order to include the effects of inplane shear
loading. Flutter boundaries for shear loads up te buckling are calculated for simply sup-
ported, isotropic panels of various length-width ratios and for a square, isotropic panel
with elastic boundary conditions along the leading and trailirg edges. For the simply sup-
ported panels, the shear loading is shown to have a large destabilizing effect when the
buckling load is approached. For such cases, the degradation in flutter resistance is
comparable to that exhibited by panels near buckling caused by biaxial loading. The out-
of -plane flexibility of the boundary supports (deflectional springs) at the leading and trail
ing edges is shown to have a large destabilizing influence on the flutter of unstressed
panels, but at the point of buckling the springs may be either stabilizing or destabilizing.
The flutter boundaries were used to define conservative design curves. The sample cal-

culations made with these design curves indicate that practical panels, which have other-
wise been adequately designed, could become flutter critical if the inplane shear loads
approach the buckling value.

INTRODUCTION

Although a large body of flutter data is reported in the literature (see ref. 1), most
panel flutter studies have ignored the effects of inplane shear loading. However, with the
advent of present day high performance aircraft and reusable space venicles, new surface
structure designs have emerged which utilize shear-strength capability. For example,
the large cargo-bay door of the shuttle orbiter is designed to transmit loads through shear.
Unfortunately, no experimental data exist on the flutter of panels loaded in inplane shear,
and the only analytical study available (see ref. 2) is limited to simply supported, isotropic
panels with small length-width ratios. Therefore, an analytical study has been undertaken
in order to provide a better understanding of the effects of inplane shear on the flutter of
panels. In the present investigation, a modal analysis for the flutter of biaxially loaded,
orthotropic panels with flexible supports and using linear piston-theory aerodynamics is



extended to include the effects of inplane shear. Calculations are made for simply sup-
ported and spring-supported, isotropic panels with inplane shear loads up to the point of
buckling in the presence of airflow. The resulting flutter boundaries are used to define
conservative, simple -to-use design curves.

SYMBOLS

Values are given in both SI and U.S. Customary Units. The measurements were
made in U.S. Customary Units.

Ann Fourier series coefficients (see eq. (12))
a panel length (x-direction)
b panel width (y-direction)
c free-stream speed of sound
Dy panel bending stiffness in x-direction
Dy panel bending stiffness in y-direction
ny panel twisting stiffness
Dy
D =
1 1 - pxgiy
D Dy
2 1
- Byl
Do = ny + 1 xD2
E modu'us of elasticity of panel material
ga acrodynamic damping coefficient (see eq. (13e))
& bending structural damping coefficient
&m membrane structural damping coefficient
h panel skin thickness



s

deflectional, rotational, and (orsional spring constants, respectively,
per unit length

nondimensional deflectional, rotational, and torsional spring constants
respectively (see egs. (10))

_ nya2
2

Dlﬂ

value of Exy for inplane shear-buckling load in presence of airflow
Mach number
number of half-waves in x-direction

uniform inplane normal loads per unit length in x- and y-direction,
respectively

uniform inplane shear loads per unit length

number of half-waves in y-direction

see equation (3)

dynamic pressure of airstream

integers

time

potential energy

lateral deflection of panel

lateral deflection of panel describing shape of natural mode of vibration

function describing shape of natural mode of vibration in x-direction



Wy

Subscripts:

m,r

Cartesian coordinates of panel (see fig. 1)
complex frequency

complex natural frequency
compressibility factor, M2 -1

panel mass per unit area

nondimensional coordinate, y/b

cross-flow angle

2qa3

dynamic-pressure parameter,
BD;

dynamic -pressure parameter at flutter for zero stress

Poisson's ratio ia x- and y-direction, respectively

nondimensional coordinate, x/a

free-stream air density

frequency

/D
fundamental frequency of simply supperted beam (radians per sec), ﬂ—z 71—
a

number of half-waves in x-direction
number of half -waves in y-direction

ANALYSIS

Governing Equations

A flutter analysis is presented which extends the analysis of reference 3 to include

inplane shear loads. Because of the similarity of ihe two analyses, only equations or
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solution procedures which differ from those presented in reference 3 are discussed in
detail. The panel and coordinate system shown in figure 1 is for a flat orthotropic panel
with a supersonic flow at Mach number M at an arbitrary cross-flow angle over one
surface. The panel edges at x = 1% are supported by deflectional, rotational, and tor-
sicnal springs; the other two edges (y = 0, and b) are simply supported. The panel is
loaded by uniform inplane normal loads Ny and Ny {positive in compression) and by a
uniform inplane shear load ny. Aerodynamic loading is given by linear piston theory
and includes aerodynamic damping. The governing equations can be developed using the
virtual work of the system as given by the following equation written in terms of nondi-
mensional orthotropic panel properties. (This equation corresponds to the expression for
the first variation of the potential energy in ref. 4):

Y e o(Z5) Zaofy) Bast 2y 2y

2 1/2 1 ( 4
+2:112ny 2w 5 dzw> dt dn_?P_ S' (a2 x?.‘la(ﬂ>+a_§lﬂ5<?_w.>
b2D, & om \?t o DyJ.1/2Y0 ot \of b2 M \om
IR N aw a®p 11222k [ )
23 . 1w g fow'  ow s/aw)|, 2P 22%Kr ow 4[ow
+?ny£¥5<3;/ * o O >}+ 5, ow) d& dn+\8‘0' B ot o15F
1/2
2 al
::2 = 6\871; K‘i ow b d (1)
-1/2

In equation (1), Kq, K, and K; are the respective deflectional, rotational, and
torsional spring constants per unit length;

Dx

D= —"—
1 l'ﬂx“y

(2)

and

p:;iz_“’. c W 20-((:05 A—+asmA——> (3)
at a m



After integration by parts equation (1) becomes:
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According to the principle of virtual work 6V must vanish, and, since 6w, 6(2?) and

o gﬁ are independent and generally not zero, the coefficients of these terms must be
zero independently. The coefficient in the double integral term set equal to zero is recog-
nized as the governing equation, and the coefficient in the single integral terms set equal
to zero is recognized as the boundary conditions.



Vibration Solution

The flutter solution to equation (4) is based on a modal analysis which employs the
natural modes and frequencies of the panel. These modes and frequencies can also be
obtained directly from equation (4) after setting the aerodynamic pressure q equal to
zero and assuming the following form for w:

w= wmneo’mnt )

where a@p,, is the complex damped natural frequency and wy,, is the natural mode
shape. Substituting equation (5) into equation (4) gives the following governing equation
and boundary conditions:
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In equation (6), the structural damping has been included in the same manner as in refer-
ence 5 by multiplying each of the bending terms by 1 + igb and each of the membrane
terms by 1 +ig,,. The structural damping considered in this manner was shown in ref-
erence 6 to give good agreement with the experimental data. The spring constants have
been nondimensionalized as follows:

~\

_ Kda3
Kd = Dl

Kra
D,

gl

P (10)

e
0

i
o

The inclusion of ny in equations (6) and (8) overly complicates the solution for
natural modes and frequencies; therefore, these terms are omitted for simplicity. How-
ever, for the flutter solution, both ny terms (eqs. (6) and (8)) are included in the gov-
erning equation. (See the section entitled ""Flutter Solution.") Equations (6) and (9), with
Nxy = 0, are identical to those solved in reference 3 and the method of solution is dis-
cussed in detail therein.

Flutter Solution

A Ga'erkin-type flutter solution can be obtained using the natural mode shapes and
frequencies and the following governing equation obtained from equation (4):
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The single integral term in the above expression is a boundary term and does not usually
appear in the governing equation. However, since the mode shapes employed in the flutter
solution are defined with Nyy = 0 (see section entitled "Vibration Solution"), they do not
satisfy the boundary conditions of equation (8). Therefore, this term must be included as
a part of the governing equation. (See ref. 7, p. 338.)

The flutter (eq. (11)) can be solved by assuming a solution in the form

i (12)

1 n=1

ll
e

where o is one of the complex frequencies. The flutter solution is obtained by substi-
tuting equation (12) into equation (11), with w, = X, sin n77, multiplying through by
Xrs sin s77, and integrating over the total area. Performing the integration and rear-
ranging the terms result in the following set of simultaneous equations:

1
Amn[ 11-2 (arznn a2> + %("mn + a)J

P co4s A S‘ Apq erns + 2Aa sin A Y A [1 - (_l)s+n]
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where
/2 ax
Qmrns = S‘-I/Z _?rgﬂ Xpg d& (13b)
1/2
Pmrns = §-1/2 XmnXrs ¢ (13c)
4
7D
w? = — (13d)
ya
c
83 = yp_@ (13e)
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Kyy = Nxya® (131)
and

A= 292 (13g)

For a nontrivial solution to equation (13a), the determinant of the coefficients of
A must equal zero. A standard eigenvalue routine for a square complex matrix is
used to calculate the eigenvalues o of equation (13a); the values of o render the deter-
minant equal to zero,

Flutter is considered to occur for the lowest value of the dynamic-piressure param-
eter A for which the imaginary part of one of the frequencies is greater than zero (no
damping) or vanishes (damping). Certain combinations or values of inplane loads (either
Ny, Ny, and/or ny) result in the condicion for some value of A where both the real
and the imaginary parts of the frequency vanish. This load condition is the buckling load
in the presence of airflow for the panel.

RESULTS AND DISCUSSION

Range of Parameters

Solutions of the flutter determinant resulting from equation (13a) were obtained for
isotropic panels (Dl =Dy = D12) with various length-width ratios subjected to inplane
shear loads. The length-width ratios were varied between 0.5 and 5.0 with combinations
of inplane shear loads ny and inplane normal loads Ny between 0 and the buckling
load. In order to keep the variables to a reasonable number, the inplane normal loads Ny,
the rotaticnal and torsional spring supports K, and Ki, respectively, and the flow angle
A were set equal to zero for all calculations. Aerodynamic damping g, and structural
damping in bending g, were varied over a realistic range. Memurane structural damp-
ing g, was set equal to zero.

Convergence

Previous studies have shown that, for converged flutter solutions of unstressed pan-
els, only one ‘nodal term is required in the cross-stream direction; the number of modal
terms required in the flow direction depends on the panel orthotropy and the length-width
ratio. However, when inplane shear loads are present, several modal terms are required
in each direction. This is evident in figure 2 where sample convergence results are shown
by plots of the dynamic-pressure parameter A against the panel frequencies for simply
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supportad, isotropic panels with various inplane shear loads and for a/b = 0.5 and 2.0
(figs. 2(a) and 2(b), respectively). The peck of the frequency loop represents the critical
value of A for which flutter instability occurs. The data show large reductions in flutter
stability with inplane shear loads; these reductions are discussed in more detail in the
next section. The curves shown were calculated using ten modal terms in the streamwise
direction and four modal terms (10,4) in the cross-stream direction. Also shown in fig-
ure 2 are the flutter values calculated using (4,4) modes, represented by the circle sym-
bols, compared with values published in reference 2 (using (4,4) modes), represented by
the cross symbols. The data indicate that, for a/b = 0.5 (see fig. 2(a)), converged
solutions are obtained when using (4,4) modal terms; however, for a/b = 2.0 (see fig. 2(b)),
(4,4) modal terms are not converged. Note in figure 2(b) that the flutter values calculated
using (10,3) and (12,4) modal ter:ns, represente.d by the square and diamond symbols,
respectively, are essentially the same as the (10,4) results and so verify the convergence
of the (10,4) mode solution 3imilar data obtained for plates with an a/b up to 5 indicate
that (10,4) modal terms in the analysis give converged solutions.

Effect of Inplane Shear

Flutter of simply supported panels.- The effect of inplane shear loads on the flutter
of simply supported, isotropic panels may be seen in figure 3 where flutter boundaries are
shown as a function of Exy for a/b values of 0.5, 1.0, £.0, 3.0, and 4.0. Calculations
are made for the values of aerodynamic damping, g, =0 and g, = 0.1, and of structural

damping, &, = 0 to &, = 0.05. The termination point of the flutter boundaries, shown
by the circular symbols, corresponds to the value of ny at which buckling occurs in the
presence of airflow. The static buckling values of ny are also shown by the square
symbols in figure 3, and are in agreement with the values presented in reference 8.

When the parel is loaded in inplane shear, the critical value of A is lowered signif-
icantly below the value for zero stress. For a/b=3.0 and a’/b= 4.0 (see figs. 3(d) and
S(e)), certain values of ny near buckling result in an anomalous condition of flutter for
zero velocity. T..is condition occurs for g, = gp = 0 and is a result of a shift in the
order of the natural frequencies. The result is similar to the data shown in reference 5
for panels with inplane normal loads. Including the aerodynamic and the structural damp-
ing in the calculations removes the A = 0 flutter condition. Usually the lowest two fre-
quencies coalesce to define the flutter boundary. However, for certain values of ny
and zero damping, the frequencies associated with the higher modes coalesce and result
in unstable conditions which, subsequently, disappear as Exy is either increased or
decrecased. Such higher mode flutter conditions were discussed in detail in reference 2
and were rot considered valid flutter points. In addition, these higher mode flutter condi-
tions can be removed by even a small amount of structural damping; the.efore, they have
been ignored in presenting the results contained herein.

11



Flutter of panels on deflectional supports.- The influence of deflectional spring sup-
ports on the flutter of square panels with inplane shear loads and with g, = 0.1 and
8, = 0.01 may be seen in figure 4. Tn this figure, A is shown as a funcuion of ny
for various values of Kd’ the nondimensional spring constant for uniform springs at the
l_eading and trailing edges. (The Kd =0 represents free edges.\) For small values of
ny, decreasing the spring stiffness Kd results in a large reduciion in A. Decreasirg
the Kd also results in » reduction of the buckling load with airflow. However, at the
point of buckling, decreasing the Kd may result in either lower (destabilizing) or higher
(stabilizing) values of \.

Flutter of panels with inplane normal loads and shear loads.- The effects of inplane
normal loads, in combination with shear, on the flutter of simply supported panels with
a/b = 1.0 and a/b = 4.0 are shown in figures 5(a) and 5(b), respectively, where values of
A/Ao are shown as a function of ny/l—(xybu. (The term A, is the value of X of the

unstressed panel and nybu is the she.r buckling value when N, = 0 and with airﬁow.)

Curves are presentod for g, = 0.1, g, = 0.01, and for Nx/ny =0,0.7, 3.0, and 5.0. As
can be seen, increasing the normal loads results in a more rapid reduction in A/Ao as
E’W/Exybu is increased. However, the minimum values of \/ Ay, or the values of .\/AO
at the point of buckling, are not changed significantly by inplane normal loads. This con-
dition is in contrast to the flutier results obtained when Ny is added to panels loaded
with Ny. (See ref. 9.) It should be noted that, for a/b = 4.0 (fig. 5(b)), the value of A
for flutter is a small percentage of A, for values of ny above 70 percent of the huck-
ling value.

Flutter of Panels Loaded to Buckling

Flutter design curves for shear.- In the design of panels for flutter it is desirable
to have solutions which are widely applicable and simple to use. Also, since the actual

flight-load conditions may not be well known, the designer may prefer to design against
the most critical flutter condition. For panels with inplane loads, the most severe flutter
conditions have been shown in the preceding sections to occur at or near the point of
buckling.

The flutter boundaries for isotropic panels at the point of buckling in shear are pre-
sented in figure 6 by the solid curves where values of X are shown as a function of a/b
for &, = 0.01 and g, = 0.04. The flutter boundaries do not vary monotonically with
a/b  for small values of a/b and g, but do, or tend to do so,as a/b or g, IS
.ncreased. Although the flutter boundaries given by the solid curves in figure 6 may be
used as a conservative design criteria, more simplified curves may be defined by the
minimum points of the actual flutter boundaries such as shown by the Jashed curves in
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figure 6. Although these curves are more conservative than necessary for certain values
of a/b (near 1.25and 2.75 for gy, = 0.01), their simplicity should justify their use in
most practical design applications.

Design curves similar to the dashed curves in figure ¢ have been defined for several
values of 8 and are presented in figure 7 by the solid curves, where XA is shownas a
function of a/b on a logarithmic scale. The resulting shear-load design curves are
nearly parallel ang, fer a/b 22.0 and gp Z 0.01, they are a family of straight lines that
may be approximated by the equation

A= 380gh(%)2'6 (19)

For a/b < 2.0, the above equation may be more .unservative than necessary. For
gp < 0.01, the design curves defined as abeve are sc restrictive that flutter boundaries
similar to the solid curves in figure 6 will probably need to be used.

The design curves obtained from reference 10 for simply supported, isotropic plates
with inplane normal loads are also shown in figure 7 by long dashed curves. The normal-
load design curves (see ref. 10) were developed with a/b values up to 10.0, whereas the
shear-load design curves were developed with values of a/b = 5.0. Because of the large
number of modal terms required for converged flutter solutions when shear loads are
inciaded, it is impractical to obtain flutter boundaries for a/b values much above 5.0.
However, because of the similarity of tie shear-load and normal-load design curves, it
seems reasonable to expect the shear design curves to be valid for values of a‘'b to 10.

Although the ncrmal and chear-load design curves show almost identical variations

with a/b, the panels subjected to normal buckling loads will flutter at a lower value of X
than will the same panels subjected to shear buckling loads. Also, the panels subjected to
a combination of inplane shear and normal loads up to the point of buckling were shown
(see the section entitled “Flutter of panels with inplane normal loads and shear loads™) to
experience flutter at approximately the same value of XA as do the panels subjected to
shear buckling loads only. Thus, the normal-load design curves can be conservatively
used for applications involving either inplane shear or normal loads or combinations of
these loads.

The flutter design curves for shear loading and for g, = 0.01 are presented in a
different form in figure 8 where q/3E is shown as a function of h’b for panels with
various length-width ratios. The shear design curves are extended to a’b - 10.0 by
the approximate equation (14) and are shown by the dashed lines in figure 8. The result-
ing curves show the effect that the panel dimensions have on the flutter speed. Increas-
ing the panel thickness h’b and decreasing the length-width ratio a ‘b both result in
an increase in the flutter speed. For thin panels (h’b small), the panel length-width



ratio a/b has very little effect on the flutter speed. For thick pane.s (large h/b),
increasing the panel length-width ratio results in a substantial reduction in the flutter
speed.

Application of shcar design curves.- One of the early shuitle cargo-bay door designs
consists of a thin aluminum skin reinforced with hat-section stiffeners, the details of which
are shown in figure 9. The stiffeners were spaced 13.2 cm (5.2 in.) apart parallel to the
flow; they terminate at frames spaced 58.4 cm (23 in.) apart traasverse to the flow. The
aluminusa skin, which is 0.076 cm (0.030 in.) thick, is covered externzlly with an insula-
tion material (not shown) for thermal protection during reentry. The most critical period
of shuttle flicht for panel flutter occurs during ascent when the door has> iugh torgue loads
which, for the carlv design, cause local shear buckling in the thin aluminum skin. For flut-
ter calculutions the effect of curvature should be small and the possible beneficial effects
of the external insulation are neglected. Thus. consider the skin between stiffeners as an
isotropic flat plate simply supported on all edges with a/b =8.84 and h/b = 0.012. For
these values, the curves in figure 8 give values of q‘3E of approximately 12 x 108 ora
value of ¢ 5 for aluminum of approximately 8.6 kPa (180 psf). Since the shuttle may
experience values of q 3 up to 48 kPa (1000 pgsf), local panel flutter could occur on a
door surface with this design for inplane shear loads up to the point of buckling. If h/»
is doubled without changing the value of a b, q/3 for flutter would be increased by
almost a factor of 8, which would provide an ample flutter margin.

CONCLUDING REMARKS

A modal flutter analysis for biaxially loaded. orthotropic panels using iinear piston-
theory aerodynamics has been extended in order to include the effects of inpiane shear
loading. Flutter boundaries for shear loads up to buckling are calculated for simply sup-
ported. i1sotropic panels of various length-width ratios and for a square. isotropic panel
with eiastic boundary conditions along the leading and trailing edges.

Convergence studies for panels with inplane shear showed that several modal terms
are required in the cross-stream direction as well as in the streamwise direction. Thus,
a large total number of modal termis are required for convergence. For panels with
aspect ratios above 5.0. the number becomes so large that flutter calculatious by the
normal-mode method are impractical.

For simply supported, isotropic plates. inplane shear loads have large destabilizing
effecis and, when loaded to buckling, may reduce the flutter dynamic pressure by approxi-
mately the same amount as inplane normal buckling loads. Deflectional springs on the
leading and trailing edges have a large destabilizing influence on the flutter of unstressed
panels, but at the point cf buckling the springs may be either stabilizing or destabilizing.
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Flutter design curves were developed for panels loaded to buckling in shear. These
curves show the flutter dynamic pressure, for panels with length-width ratios above 2.0,
to be directly pronortional to the structural damping and to the panel length-width ratio to
the 2.6 power. Flutter design curves for buckling in inplane shear or combinations of
‘nplane shear and normal loads were found to be conservatively predicted by the design
curves for parels buckled under inplane load N, alone. Calculations made for an early
proposed design of the shuttle cargo-bay door indicate that practical panels, which have
otherwise been adequately de<‘gned, could become flutter critical if inplane shear loads
approach tne buckling value.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., January 22, 1975.
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Figure 5.- Flutter boundaries for simply supported, isotropic panels with inplane
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